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Abstract

The theory is presented of the physical models used to correct
historical sea surface temperature (SST) data. The models
calculate the rate of loss of heat from ocean water in a bucket
during a measurement, assuming that the water is always well-
mixed. Two types of models are considered: (a) uninsulated,
soaked canvas bucket or highly conducting metal bucket wi th a wet
surface, and (b) partly insulated wooden bucket. Full details of
how the models are used to correct historical SST data are given
in Folland and Parker (1990, 1992), henceforth FP, and in Parker
and Folland (1991) (PF). Idealised examples are given of the
cooling rates of water in the buckets when exposed on deck.
Finally results of an initial set of field tests of the theory
are given where the observed cooling of a canvas bucket on deck
is compared with that predicted.

1. Introduction

Allowance has already been made in the observations section of
the IPCC (1990) Science Report (Folland, Karl and Vinnikov, 1990)
for the substantial influence on assessed climate change of the
artificial cooling of observed sea surface temperature data
before 1942 due to the widespread use of uninsulated buckets at
that time. Both SST analyses used in the IPCC Science Report
(Bottomley et al., 1990 and Farmer et al., 1989) were corrected
by early versions of the theory discussed here. The "bucket"
corrections have the effect of decreasing the apparent magnitude
of long term SST changes, making them quite similar to those
assessed for surface air temperatures over land. Climate changes
independently measured over the oceans from ship's air
temperatures also become similar. This note gives full details
of the theory of the bucket models that contribute to the
Bottomley et al. "refined" SST corrections and identifies recent
improvements to the models. The way in which the models are used
to calculate corrections to historic SST data is summarised in
section 8.3; a fuller discussion appears in FP(1990).

Models of the heat exchange between uninsulated and partly
insulated wooden buckets and the· atmosphere are derived from
appropriate heat transfer theory. Because model boundary
conditions change during the integrations, models are integrated
step-by-step and analytical solutions are not used as was done
by Farmer et al. (1989) (FWJS). The canvas bucket model is shown
to reduce to the theoretical equations for a cylindrical wet bulb
thermometer (Appendix 2). Models for wet metal buckets are not
distinguished, though differences do, in principle, exist. The
model of the cooling of a wooden bucket is derived with the help
of the primitive equation of unsteady heat transfer through a
poorly conducting plane wall. It is shown that an assumption made
by FWJS that the wooden walls of sea-buckets are effectively
totally insulating may not be adequate.

Folland and Hsiung (1987) discussed corrections to SST measured
using canvas sea-buckets. Their theory is derived differently,
and less fully, than that discussed here, though their equations
give quite similar results. Corrections for the use of canvas
buckets published in Bottomley et al. (1990) are based on an
earlier, slightly modified, version of the theory presented here.
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Differences are pointed out in the text as the theory is
developed. Corrections for wooden buckets in Bottomley et ale use
a simplified method mentioned in the summary (section 9).

1.1 Note about physical constants

The variation of certain physical "constants" which change a
little with temperature, pressure and sometimes humidity has been
ignored. As far as possible their values have been chosen to be
those appropriate (where relevant) to an air pressure of 1015mb,
a temperature of 20°C and an atmospheric relative humidity of
75%. Some physical quantities which vary considerably over the
range of temperatures observed at sea but whose variation only
has second or third order effects on the cooling rate of buckets
have also been regarded as constant. Thus the long-wave radiative
heat transfer coefficient, which varies by over 30% in the
temperature range 0-30°C, has been given a value appropriate to
a mean bucket surface and air temperature of 20°C and a bucket
emissivity of 95%. In most cases, empirical constants are only
quoted to two significant figures and occasionally one. These
choices often differ slightly from those used in existing
publications (e.g. Bottomley et al.) which were not completely
consistent in this regard, but the effects of the changes are
small. Wherever the heat transfer coefficients used here differ
from those used before, the reasons are explained. The overall
effects of all changes on calculated bucket corrections are, at
most, strong second order.

2. The Canvas Bucket - model geometry and assumed pattern of use
on deck
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Figure 1 Conceptual diagram of a canvas
bucket
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Fig. 1 is adapted from FP(1990).

1. The top of the bucket may be open to the atmosphere but is
regarded as effectively closed because the water surface is
usually well below the rim, and so is exposed to a much lower
than ambient average airflow speed (offset perhaps by increased
mass and heat transfer due to extra turbulence inside the bucket
entrance). In some buckets there may also be a lid. So although
the entrance is shown open in Fig. 1, modelling is done for a
closed bucket.

2. The bucket walls are assumed to freely evaporate at the
potential rate while water in the bucket is assumed t9 be well-
mixed and at the same temperature as the walls. The rate of
cooling (or in rare cases, heating) of the bucket on deck is
almost inversely proportional to the mass of water in the
bucket for a fixed shape of bucket. So by choosing small and big
buckets it is possible to change the cooling rate by a fairly
large amount to determine the sensitivity of the corrections to
bucket size (FP, 1990). In principle, the corrections are hardly
affected if we integrate the model for a time almost proportional
to bucket thermal capacity. The time for which the model is
integrated is varied as briefly described in subsection 8.3
(discussed in detail in FP, 1990) where it is shown that the
above procedure follows automatically during the calculation of
corrections. Bucket shape can also be changed; in calculations
done to date, only the ratio of bucket height to width has been
changed, retaining a cylindrical shape. In reality bucket
"height" is not defined by the physical height of the bucket
walls but by the depth of water in the bucket. This arises
because the thermal mass of bucket walls not in contact with the
water are ignored. This is acceptable as heat transfer vertically
within the walls is small, the walls being very thin.

3. The base of the bucket is assumed to freely evaporate at the
same temperature as the water. For certain buckets this may not
be true, e.g. the bucket described by Ashford (1948) and widely
used by the Meteorological Office where the base is wooden. Here
the wooden base contains holes which allow 'water to circulate
underneath a thin metal plate placed above the wooden base, with
a gap in between, which serves as an inner watertight base. Thus
if the theory overestimates the cooling of water due to
evaporation from the base of buckets in general, this is
compensated by not allowing evaporation (or any other heat
transfers) from the free water surface. This is discussed further
in section 3.1.2.

4. A typical method of observing the SST can be summarised as
follows (based on various sources: e.g. Brooks, 1926, Maury,
1858, Meteorological Office 1868, 1956). FP(1992) give a more
complete list.

(a) The bucket (wooden or canvas) was lowered into the sea and
left for a minute or longer to fill (a canvas bucket rarely fills
completely) .

(b) The bucket
placed on deck,
deck. The rate
between these

was carefully hauled over the ship's side and
or hung from a suitable projection just above the
of cooling of the bucket is slightly different
two cases, the former situation inhibiting
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evaporation from the bucket base. In canvas bucket models it is
assumed that the bucket hangs freely as this is more convenient
though instructions are generally silent on this.

(c) The thermometer was placed into the sea water contained in
the bucket as soon as possible and allowed to come into
equilibrium by stirring the water with the thermometer. Sometimes
the thermometer bulb was protected by a shield (thermometer
protector) incorporating a small water reservoir. We have
included the small effect on the water temperature of inserting
a thermometer initially at the dry bulb temperature into the
water; this was not included by FWJS in their model. The
thermometer and reservoir in all models discussed here are
allocated a nominal (empty) combined thermal capacity of 35gm of
water as described by Ashford (1948). Inclusion of this term
usually has little effect and reduces as bucket volume increases,
but is strong second order in winter in the Gulf Stream and
Kuroshio current regions. The term was included because it seemed
to be necessary to fully explain some experimental results of
Brooks (1926) in the Gulf stream region.

(d) After an additional period varying from 1-2 minutes (typical
in the twentieth century) to 4-5 minutes (Maury, 1858) the
thermometer was read. This time is not assumed in the model, but
as indicated above, is calculated from the time needed to create
corrections that best equates the size of the annual cycle of SST
data in pre-1942 data with that in 1951-80 in extratropical
regions. This procedure would fail if the model were
qualitatively inappropriate as the annual cycle of corrections
must vary qualitatively in the correct manner, with larger
corrections in winter. Sometimes the temperature was measured by
first quickly extracting a thermometer with attached water
reservoir from the bucket (Brooks, 1926). We have neglected extra
cooling caused by this procedure as it may not have been general.
When this happened, much faster cooling would often occur. It is
likely that the influence of individual temperatures severely
affected in this way will have been minimised by the quality
control procedures of Bottomley et ale

An effect which concerned Brooks has been excluded. He carried
out experiments to show that when a canvas bucket first entered
the water it was generally cold relative to the SST, sometimes
considerably so. Unless the bucket was trawled in the water for
long enough, or was dipped into the sea twice, the first sample
of water being thrown away, additional cooling of the sea water
could result. On the other hand, if the bucket was taken inside
the ship (erroneously) or stored in a place exposed to strong
solar insolation, it might have entered the sea too warm. So we
ignore any bias in the initial temperature of the canvas (or wood
in section 6).

Note that climatological wind speeds are used in a special way
to calculate corrections in Bottomley et al. which allows for
the non-linear influence of wind speed on heat transfer. FP( 1990)
give details. On deck, the ambient wind speed is assumed to be
less than during the bucket hauling phase; in both cases wind
speeds are assumed to be substantially less than reported at 10m,
as discussed later.
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3. Theory of heat losses from uninsulated sea-buckets
introduction

A sea temperature bucket is regarded as an upright circular
cylinder subjected to airflow transverse to its axis (Fig. 1).
For buckets of usual dimensions, turbulent airflow around a
bucket is "sub-critical" (Folland, 1988). Under these conditions,
the flow around the bucket can be parameterised in a fairly
straightforward way because the geometry of the flow remains
quite "similar" for the observed range of Reynolds numbers, Re,
(1 <Re <2x105

) with minor modifications for Re<1000. Eckert and
Drake (1985) (ED, 1985) give details. The Reynolds number for a
cylinder in transverse flow is given by:

Re
u

(la)

where Uo = mean freestream air velocity

D = cylinder (bucket) diameter
u = kinematic viscosity of moist air (about 1.5 x 10-5 m2s-1

at 200e and "norma L" pressure assuming an air density of 1.2 kgm-3
(Kaye and Laby, 1986).

Now u-1 = 67000m-2s (to two significant figures). Thus for all
quantities in mks units:

Re = 67000110D (lb)

In general 0.05, < D < 0.2m for canvas or metal buckets (see FP,
1990).

Heat and mass transfer from typical buckets can be described with
almost the same equations for 0.01 < u < 20 ms", "Ca Ims " do not
arise when the influence of the ship speed is taken into account
(section 4). Fig. 2 (overleaf) shows the main components of heat
transfer, taken from FP(1990):

a. Sensible heat exchange across the bucket and water surfaces
(the latter may be small as discussed above and is ignored in the
model derived here).

b. Evaporation from the wet canvas (metal) bucket surface and
from the water surface in the bucket (the latter is assumed to
be zero).

c. Long wave radiative heat exchange between the bucket, its
inner water surface (this is ignored) and its surroundings.

d. Direct and diffuse short wave sky radiation and reflected
radiation receipt by the bucket and its water surface. Reflected
radiation is ignored, as is short wave radiation receipt by the
water surface.
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3.1 Sensible heat transfer rates

The sensible heat transfer coefficient between the bucket or
water surface and the ambient air may vary systematically across
its surface. A local sensible heat transfer coefficient h] is

DCdefined by:

Wind--->~ TAl"
TBUCI(ET

RL.ONG L S

LandS denote latent and sensible beat transfers.

Canvas
Wall

Figure 2 Heat transfers from an un insulated bucket

(2)

Here ~~II = local .rate of transfer of sensible heat

A =local areal size of bucket
tb= local temperature of bucket surface
ta= ambient temperature of air (same everywhere)

where T is used to denote time. Now h, can be re-expressed in
terms of the local value of a dimensio~less Nusselt number, Nu,
for any geometry:

k
hloc = -NU1oc (3a)x

where k=thermal conductivity of air and x is the distance along
the bucket surface from a reference position at its windward
edge. Nu is nominally the ratio of x to the thickness A of the
thermal boundary layer above the bucket surface, (ED, 1985 p176).
Equation 3a results because h is defined to be the ratio k/A and
heat transfer across the thin thermal boundary layer adjacent to
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the bucket surface is considered to occur by conduction. The
boundary layer is so thin that Nu is very large almost
everywhere. For a bucket it is sufficient to calculate average
values of hl and NUl ' i.e.

DC DC

7i = ~NU (3b)
x

Henceforth Nu and h will represent average values.

3.1.1 Sensible heat transfer rate from the cylindrical sides

Eckert and Drake in their longer book on heat and mass transfer
(Eckert and Drake, 1972) (ED, 1972) quote formulae for Nus given
by Zhukauskas et ale (1968) for heat transfer from the external
walls of (cylindrical) tubes in transverse flow (ED, p406). The
formulae are expressed in terms of Re and another dimensionless
quantity, the Prandtl number, Pr, of the air. The Prandtl number
is the dynamic viscosity of air multiplied by its specific heat
at constant pressure divided by its thermal conductivity or,
equivalently, the ratio of the kinematic viscosity of the air and
its thermal diffusivity. Simplified expressions for cylindrical
geometry are:

Equation 4a is essentially for flow around the bucket slower than
the "sub-critical" turbulent range and equation 4b is for flow
in that range. In equation 4a, a tiny constant term 0.43 added
to 0.5Reo.5 by ED(1972) in their equation 9.29 (p406) has been
neglected. A factor that multiplies both equations is also not
explicitly shown: this is a function of the ratio of the Prandtl
number of the free air to that at the cylinder walls and has been
set to unity as suggested by ED. Equation 4 assumes that the
reference value of x for a cylinder is taken to be (p 405 of ED,
1972):

x=D

This is slightly different from the mean value of x measured
between the windward and leeward-most points on the cylinder,
nD/4. Substituting for Nu in equations 4a and 4b gives equations
Sa and 5b:

U 0.5
= O.Sk(_o) PrO•18

vD
(Sa) 1 < Re < 101

7



(Sb)

Substi tuting Pr=O. 71, ,,=1.5 10-5m2s-1 and k=O. 025Wm-1 °C-1, gives:

u= 2.8(_°)°·5
D

(5c) 1 < Re < 103

~."
= 4.3_°_

DO.4 (sci) i o- < Re < 2xl05

Equations Sc and 5d dO~not properly allow for turbulence in the
incident flow. If this exists, as is likely on a ship, the heat
transfer coefficients may on average be somewhat larger. In
previous work trivially different heat transfer coefficients from
those used here of 2.9 and 4.5 were used.

3.1.2 Sensible heat transfer rate from the base

No readily available formula was found, so one was derived. ED,
1985, p176, give the local Nusselt number for heat transfer from
a flat plate subject to forced convection in laminar flow:

remembering that Rex =

Because the plate or base is nominally flat, the laminar flow
formulation is reasonable (but see below). From this the average
heat transfer coefficient for the base, regarded as a circular
flat plate, is calculated from geometrical considerations.
Appendix 1 gives:

Xl
hb4:se=4.3(~)O.5 (6b)

This formula is approximate in practice as a real bucket base may
have a complicated structure, as for the Ashford (UK Met Office)
canvas bucket. The bucket may also swing in the wind and increase
thp. base heat transfer coefficient. On the other hand the rope
used to suspend the bucket may cover part of the base and
decrease heat exchanges. Overall, equation 6b seems adequate, as
the influence of the base on heat transfers is usually markedly
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less than for the cylindrical walls because of its smaller area.
In previous work a smaller heat transfer coefficient of 2.8 was
used (0.65x4.3) to allow for the influence of a rope around the
base. This is not now felt to be justified given the neglect of
possible heat transfers from the top of the bucket.

The difficulty about deciding on the efficiency of cooling from
the base of an Ashford (Met Office) type canvas bucket was
resolved as follows. The cooling rate of the base was multiplied
by factors F in the range 0 < F < 2 (F=2 assumes unrestricted
heat transfer from the base and the water surface) and the
calculated cooling after 1 minute was compared with that observed
in a wind tunnel by Ashford (1948). His observations were made
over a wide range of differences between the bucket temperature
and the wet bulb temperature (see FP, 1990). Use of F=l with the
model derived above gave an almost perfect agreement with
observation in all conditions, even better than for the similar
calculation in FP(1990). Details will be given in FP(1992). So
the base is assumed t~ freely evaporate. (Note that wind tunnel
airflows are not usually turbulent). Real heat losses from the
base are probably a little less than this but are compensated by
small heat losses from the water surface and possibly by slightly
larger heat transfer coefficients than assumed because of
turbulence in the incident flow. The diagrams in section 7 assume
F=.25 so bucket cooling rates are a little less than for F=l.

3.1.3 Sensible heat transfer from the upper water surface

This is likely to be small because the upper water surface is
usually well within the bucket and some buckets have lids. The
use of F=l in section 3.1.2 which automatically excludes sensible
heat losses from the open water surface for a canvas bucket is
therefore adequate. However, they are included in wooden bucket
models because these probably had no lids and may also have
filled with sea water more successfully (section 6).

3.1.4 Total sensible heat transfers

Let the area of the bucket side (cylindrical) walls be Acyl and
that of the base be Are . Then the total rate of loss of heat due
to sensible heat transfer is:

(7 )

3.2 Evaporative heat transfer rates

Evaporative heat transfer calculations involve intermediate
calcula tions of mass transfer from the bucket surface to the air.
The equations used to calculate mass transfers associated with
evaporation are similar to those used in sensible heat transfer.
The main change is that the local Nusselt number is replaced by
a local Sherwood number, Sh, (ED, 1972, p732) defined by:
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where h is the mass transfer coefficient and C the mass
diffusion coefficient. For a flat plate (bucket base) evaporating
in forced laminar flow, an equation similar in form to equation
6a for sensible heat transfer is obtained:

Sc is the Schmidt number, the ratio of the kinematic viscosity
to the mass diffusion coefficient. This equation is valid for
values of Sc>0.6 appropriate to the bucket situation. ED (1985)
indicate (p476) that for the evaporation of water into air, the
ratio of the thermal diffusivity to the mass diffusion
coefficient at 20°C is 0.835. Manipulation of the above equation
for Sh and equation 6a gives:

Sc = 0.a35Pz and

where p is the density of moist air, c is the specific heat of
air at constant pressure and h is, as ~efore, the sensible heat
transfer coefficient. Thus equations for h are similar to those
for h. In previous work (Bottomley et al.' it was assumed that
Pr=Sc.

3.2.1 Replacing hiliby a function of h

The appropriate form of the evaporative heat transfer equation
for the base and cylindrical walls of the canvas bucket can be
derived from the equations for mass transfer as below. It is
shown that the sensible heat transfer coefficients already
derived for the base and cylindrical walls can be retained if an
extra term is incorporated for evaporative heat losses. The mass
transfer coefficient is defined from:

where m is the mass fraction of the vapour in the moist air so
that mb and m are mass fractions in the air at the bucket
surface and in the free atmosphere respectively. Equation 8a
relates to mass transfer per unit area. Using the identities in
the previous paragraph we can substitute h for h :

m

dm
P. ch Cab)

Nowm = Pw
Pa

the ratio of the densi ty of water vapour and air.

Regarding the density of air as constant:
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dp .,
=Cit (8e)

Let L be the latent heat of evaporation. The rate of loss of heat
per unit volume associated with the evaporation of a given amount
of water vapour is then:

Thus from (8c) dO" =Cit
hL

1.13-- (p~ - P"'!I)
CpP a

From the gas laws:

eM.,
RT

s«;and Pa =
RT

Mw .is the molecular weight of water vapour, Ma that of air, R the
un Lve rsaI gas constant, T the absolute temperature, p the
atmospheric pressure and e the vapour pressure. Taking the ratio
of these quantities with M./M =0.62, the rate of heat transfer
associated with evaporation expressed as a function of his:

dQ., =dT

Expressing eb and ea in mb, and setting L= 2.45x103 JKg-1, p=1015mb
and c for air=103 JKg-1 °C-1, the rate of loss of heat per unit
area ~ecomes:

(9 )

The bucket surface vapour pressure should be that of sea water
the vapour pressures of pure water appropriate to the bucket
surface (but not the air) are multiplied by 0.98. Evaporation may
be even less if salinity tends to increase on the bucket surface,
though diffusion of water from inside the bucket should minimise
this. Note that the factor 1.7 in equation 9 was previously set
to 1.5 because Pr was set equal to Sc.

3.3 Total rate of beat lost by sensiLle and evaporative
mechanisms

This is given by:
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dO
ck

dO.,
+ --dt {lOa)

3.4 Heat transfers by long-wave radiation

Assuming the emissivity is unity, let the rate of emission of
long wave radiation per unit area from the bucket be Hb and the
rate of reception from its surroundings, assumed to be at the air
temperature, be H. Then the net heat lost by the bucket due to
long wave radiatite heat transfer is:-

The long wave radiative heat transfer coefficient is defined as:

The value of h varies markedly with temperature but, because it
is a small factor in the heat budget of buckets, a fixed value
of 5.4 Wm-2 °C-1 has been used (appropriate for an average of the
bucket surface and the air temperature of 20°C). The total
effective area of the bucket exchanging long wave radiation with
the surroundings is that of the sides and the base, exchanges
from the water surface being neglected. The total net loss of
heat due to long wave radiation is then:

{ll)

3.5 Total heat transfer rate by sensible, evaporative and long
wave mechanisms

Expressed as the rate of heat loss from the bucket, this is given
.by adding equations lOb and 11 to give equation 12:

3.6. Influence of solar radiation

This section is modified from that in Folland and Hsiung (1987)
(FH). By day the influence of incident short wave radiation needs
to be accounted for. In the current correction procedure this is
derived from 24 hour monthly climatological averages of incident
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short wave radiation intensity Q actually absorbed by a local
horizontal ocean surface and varies with latitude, longitude and
season. Section 3.6 derives the 24 hour average intensity
incident on the bucket. Q =0 is assumed for the base, so Q only

s saffects the bucket walls.

3.6.1 Calculation of Q
5

Let the albedo of the ocean be a (set to a constant value of
0.06). Then the radiation intensity incident on unit area of a
horizontal ocean surface is:

0'0 = (l-a)

The component of this radiation normal to a vertical bucket
surface is easily shown to be, where 8 is the angle of incidence
of the radiation to the horizontal:

o:O&n = 01:
tan6

Q"
(1-a}tan6

The radiation intensity varies around the bucket, some of the
bucket being in shade. Its average depends on 8. If the albedo
of off-white canvas=0.2, an initial estimate of mean intensity
is:

= 0.8 0
~(1-a)tan6

In FH, Q was scaled by the ratio of the whole active surface
area of the bucket (base+sides) to the area of the sides alone
for computational convenience. Now 8 varies with latitude and
season. This was not allowed for in FH or in the programs used
to calculate idealised bucket cooling curves in section 7 but was
allowed for in Bottomley et al. The proportion of full sky
radiation considered diffuse has been set to one third with a
geometrically calculated mean angle of incidence of 330 (350 used
in FH). In this note an average effective diurnal mean angle of
combined diffuse and direct radiation 8 of 8 =350 is assumed
giving tan 8m=0.7. This gives: m m

(13a)

This simplified formula will not be used in revisions to the
correction procedure. There is of course doubt about the extent
to which buckets were in shade or in the sun; the influence of
Q depends on how much care was taken to keep buckets in ~he
shade. Fortunately the influerice of Q is small, though not
always quite negligible (see section s..., for examples of its
influence).
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3.6.2 Bucket equation with solar radiation

Inserting the simplified factor for solar radiation and noting
that it represents a heat gain:

4. Overall change in bucket temperature

The change in bucket temperature due to all the above processes
in unit time interval (oni'~econd) is given by:

(13c)

where wand cb are the mass and specific heat of the bucket
materiai (these might be different for the base and the sides)
and Ww and Cw are corresponding parameters for sea water.

4.1 Influence of inserted thermometer on heat transfer rate and
water temperature

The canvas bucket models are integrated in half minute steps (FP,
1990) and a thermometer inserted into the bucket at the third
step. All heat exchanges between the thermometer and the water
in the bucket are assumed to take place in the third half minute.
The thermal capacity of the thermometer and its "protector" is
set equal to the equivalent of 35grn of water as described by
Ashford (1948). Thus in the third half minute the rate of heat
transfer (per second) is increased temporarily:

(14a)

The factor 0.0012 represents a nominally uniform rate of exchange
of heat between the thermometer and the water in the bucket in
each second in the third half minute. Temperature changes in the
third and sUbsequent half minutes are given by equations 14b and
14c respectively:

1 dOth
WbCb+W.,C",;+O. 035 -at (14b)

1 dQ
w,bcb+wwc ...+O.035 eft (14b)
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5. Allowance for ship speed

In the uninsulated and wooden bucket models an allowance is made
for a mean ship speed, partly derived from an investigation of
log books. The assumed mean ship speed varies from 4ms-1 in the
mid-nineteenth century to 7ms-1 in 1940. It is combined with the
climatological wind speed to obtain a representative wind speed
around the bucket. However both speeds are reduced to allow for
the sheltering influence of the ship and the height of the bucket
above the sea. Different assumptions about this reduction have
been made (FP, 1990) but typical examples are: hauling phase: a
reduction factor of 0.6 for the ambient wind speed but unity for
ship speed; on deck: a reduction factor of 0.4 for the ambient
wind and 0.5 (in this note) or 0.67 (in some models) for ship
speed. Ship speed has the largest effect in the lightest winds.
The method is as follows:

Let the reduced climatological wind speed past the bucket be u,
the reduced ship speed be s and the angle between the ship's
heading and the ambient wind vector be S. The angle can be any
value so we assume a uniform distribution of angles and calculate
an average vector combination of the two reduced speeds, u' from:

.21[

u' = _!__ f [(u2-2uscose+s2) o.S] d) - (U2-+S2) 0.5 (15)
21t

8-0

The right hand side of this equation is approximate and typically
overestimates the wind speed by about 5%. This is error is small
compared to uncertainties in the assumptions about the actual
wind speed around a bucket on a ship's deck. So if the ship speed

': is 4ms-1 and the wind speed is zero, equation 15 gives u t =Zms ?

for a ship speed reduction factor of 0.5.

6. The wooden bucket model

Observational procedures for wooden and canvas sea buckets are
assumed to have been qualitatively the same. A nineteenth century
oak bucket covered in iron bands and used on a ship has been
found (Parker, personal communication) though there is no
indication that it was used for taking sea temperatures. This
bucket had sides ~.. (1 cm) thick and on average was 10" in
diameter, wider at the top than the bottom. This bucket would
probably have filled quite easily - and the water surface would
have been open to the atmosphere. So it is assumed that the water
surface exchanged heat quite freely with the environment. Also
the volume of water collected in wooden buckets may have been
markedly more than in canvas ones. Fig. 3 shows the wooden bucket
as modelled.

The main assumptions are:

1. The open surface of the water is fairly near the top of the
bucket. Thus sensible and evaporative heat transfers will occur
and solar radiation will affect the surface.

2. The external bucket walls will be wet on leaving the ocean.
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Figure 3 Conceptual model of a wooden bucket

The wood of the bucket walls should also be damp from frequent
immersion. Because bucket walls are made of many pieces of wood,
as in a barrel, there is a relatively large exposed surface area
that can soak up water.

3. The walls are highly but not perfectly insulating. During
exposure to the atmosphere a temperature gradient develops within
the wooden walls which may be non-linear. Thus the outer surface
of the wood can be at a markedly different temperature from the
water inside the bucket. The set of heat transfer coefficients
between the wood surface and the air is assumed to be the same
as for the canvas bucket as the geometry is similar I ignoring the
fact that a wooden bucket is not quite cylindrical. The three
areas of heat exchange with the atmosphere are from:

a. the water surface

b. the bucket sides

c. the bucket base

6.1 Rate of exchange of heat from the free water surface

It is assumed that the free water surface is exposed to the
ambient airflow and solar radiation. However there will be some
sheltering of the water surface that will reduce the airflow and
cause shading of the water surface, effects that work in opposite
directions but may not cancel. The heat transfer coefficient of
the free water surface has been chosen as that appropriate to the
bucket base multiplied by a factor <=1.

Referring to equation 13b for the canvas bucket, the rate of loss
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of heat from the free water surface is obtained by retaining the
terms in h only. Now Q was defined to be the short wave
radiation p~netrating the horizontal ocean surface. Q

s
is thus

appropriate to the flat water surface in the bucket without
modification.

Because of the uncertainty in the level of the water in wooden
buckets a second versions of equation 16 has been used in recent
correction procedures where all heat exchanges across the free
water surface have been multiplied by 0.5. For sensible and
latent heat exchanges, this is approximately the same as reducing
the mean air velocity over the free water surface to 2~% of that
on the external walls.

6.2 Rate of heat exchange from wooden walls and base

Wooden buckets are assumed to be cylindrical so that the heat
transfer coefficients associated with a cylindrical body in
transverse flow can be used. The cooling of water in a bucket via
heat exchanges through walls of finite thermal conductivity is
a problem in unsteady heat transfer with variable boundary
conditions. The simplest way of carrying out the calculations is
to assume that the internal and external bucket surfaces are
locally flat and parallel. This avoids the need to calculate heat
flux divergences associated with the nominally larger cross-
sectional area of the outside compared to the inside walls. For
a typical wooden bucket with a mean diameter 25cm and wall
thicknesses around 1-1.5cm, this assumption is excellent. It is
also assumed that the flux of heat is one dimensional, i.e.
directly from the water to the outside air with no fluxes
vertically or sideways wi thin the walls. The general equation for
unsteady heat conduction is given by ED, 1985, p31. For- one
dimensional heat transfer in the x direction in a body with no
internal heat source:

at k CPt;
"3:'" = --
00 pc cx2

(17 a)

where t=temperature, L is time and c is the specific heat. The
factor k/pc is the thermal diffusivity Q. Equation 17a can be
written in finite difference form:

(17b)

The subscripts L and x correspond to variable times and locations
as equation 17b is a partial differential equation. Let a fixed
place in the wall be n and a fixed time be p. Then equation 17b
can be expanded to:
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(18)

Equation 18 is solved iteratively by dividing the bucket wall and
base into layers of equal thickness as in Fig. 4. Five layers
have been used in the model; experiments with three layers showed
that cooling was more than 10% overestimated due to numerical
errors even with very tiny time steps.

water
in bucket

inner
surface

o ,- 1
I

5 Layers
2- 3 4

I<-[).x->

5

I
I
~
~ Tair

I
E

~
~ outerwall
~r::

FJ.gure 4 DivisTon -of bucket walls
into five layers in the model

The temperature of all elements in Fig. 1 is initially set to the
sea temperature. Experiments for a bucket wall and base thickness
of 1 cm, thermal conductivity of wet oak 0.3 Wm-1 °C-1, wet oak
density 800 Kgrn-3and specific heat 1900 JKg-1 °C-1 showed that a
time step of 2 seconds with 5 layers gave on average errors
(overestimates of heat transfer) of about 5% or less compared to
the use of 10 layers and a time step of 0.05 seconds. This was
regarded as satisfactory. The calculation proceeded as follows:

1. The heat loss from the exposed water surface, dQ , was
calculated from equation 16. This gives an initial changeW~o the
water temperature and therefore that at n=O in Fig. 4.

2. Heat fluxes in the cylinder wall and the base were calculated
from the linear thermal conduction equation for the internal
surface of the wall in contact with the water, and the internal
surface of the base. The latter position, n=O, was assumed always
to be at the water temperature. Thus the rate of loss of heat by
the water in the bucket through the bucket wall and base is:
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dQCyl =
d.

(19a)

(19b)

where AX is the thickness of one layer, nominally that between
n=O and n=l.

3. The change of temperature at each point in the bucket wall and
the base was calculated using equations like equation 18.
Initially the outer surface (n=5) was set at the sea temperature.
Calculations of the temperatures at other layer positions started
at n=4 and proceeded iteratively to n=l.

4. The temperatures of the bucket wall and base surfaces were
then changed using:

dt
d.

dt
d.

M 1 and M are the products of the mass and specific heat of
th~ water "fiim on the two bucket surfaces (see next paragraph).
It is unclear whether wooden buckets always stood on deck or were
sometimes hung from a hook. It is assumed in correction
procedures (but not in the examples in section 7) that wooden
buckets were stood on deck (canvas buckets were assumed to hang
free) and that heat transfer through the base ceased after
hauling. Thus equation 20b is set to zero from the third half
minute in correction procedures.

It was not initially clear whether a wooden bucket would retain
a film of water on its outer surface for the duration of an
observation. Experiments on small pieces of wet oak and softwood
dipped into water, shaken and reweighed on a precision balance,
showed that this water film thickness was initially about O.l~~.
Special runs of the model suggested that a film of this thickness
would rarely disappear during the typical lengths of time for
which the wooden bucket model needed to be integrated (up to 15
minutes for a very large bucket). So a constant film thickness
of O.lmrn has been assumed for simplicity. The results are
insensi tive to other reasonable choices of thickness, or to
decreasing the thickness as evaporation occurs, as long as a free
water surface exists on the outside of the bucket that allows
evaporative cooling to continue at the potential rate. Seepage
of water through the wood and through the joints in the bucket
is likely to have contributed to the maintenance of a water film

19

j





FIG 7 MODELLED COOLING OF LRRGE CAtNAS
BUCKET AFTER 4 MINUTES
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winds. Cooling also depends quite sensitively on air-sea
temperature difference.

For a more typical equatorial air-sea temperature difference of -
1°C, cooling would be reduced by 20-25% below the values in Fig.
5. Thus in equatorial regions with a relative humidity of 75%,
S=7m/s, a 10m wind speed of 5m/s and an air-sea temperature
difference of -1°C, typical modelled cooling of this large bucket
after 4 minutes would still be rather over 0.5°C.

Fig. 6 shows similar cooling curves for the large wooden bucket
(containing 10 litres of water) of wall thickness 1cm and thermal
conducti vi ties K (of wet oak) 0.3 Wm-1 °C-1 and 0.15 Wm-1 °C-1• The
integration was done in 2 second time steps. Here S=4m/s,
believed to be typical of ship speeds in the second half of the
nineteenth century. The bucket is assumed to continue to cool
from its base throughout the period of exposure while the heat
exchanges through the.water surface are reduced to 75% of their
value for a freely exposed surface. Cooling rates of this bucket
are typically 20% of those of the large canvas bucket. Thus a
cooling of just over 0.1°c for u=5m/s at 10m, K=O. 3 Wm-1 °C-1, an-
air sea temperature difference of -1°C and RH=75% (the cooling is
about 75% of that shown as a cross) is small, but not entirely
negligible.

Figs 7 and 8 show similar curves for SST=lO°C and air temperature
=8°C (typical extratropical conditions in winter) for canvas and
wooden bucket respectively. Fig. 8, for the wooden bucket, shows
curves for two values of K. The lower value of K is about the
minimum for dry wood and reduces the cooling rate to about 65%
of that using K=O. 3 Wm-1 °C-1much as for equatorial conditions in
Fig 6. The rate of cooling of the canvas or wooden bucket with
a given value of K is roughly 40% of that for the same bucket in
equatorial conditions (Figs 5 and 6 respectively), showing the
importance of evaporation rate in the heat balance. However in
winter, air-sea temperature differences and wind speeds are often
considerably larger in the extratropics than the tropics. So for
the extratropical conditions of Fig. 7, an air-sea temperature
difference of -2°C, a wind speed of 10m/s, S=7m/s and RH=75%, the
large canvas bucket is calculated to cool about 0.35°C after 4
minutes, about 0.15°C less than for the typical equatorial
conditions mentioned above. However, for typical December
conditions east of Cape Hatteras around 35~ with SST=20oC, air
temperature 15°C, 10m wind speed 10m/s, RH=75% and S=7, cooling
after 4 minutes reaches 0.85°C (for an Ashford bucket with F=l,
cooling exceeds O.9°C). This is the region and season where
bucket corrections are largest (Bottomley et al., 1990).

7.2 Cooling as a function of exposure time

Fig. 9 shows cooling curves for the large canvas bucket for
S=7m/s, RH=75% for two values of 10m wind speed u, and for the
equatorial and extratropical conditions of Figs 5-8. The faster
cooling in the first 1.5 minutes is contributed to by the
insertion of the thermometer in the third half minute whose
temperature is assumed to be that of the air. Tropical conditions
clearly give more cooling for a given wind speed. The cooling
after 3 minutes exposure time for the equatorial conditions shown
when u=5m/s is about the same as that for the extratropical
condi tions after 10 minutes exposure time with u=15m/s. In
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practice, typical cooling rates in the tropics and the
extratropical winter are often comparable due to higher wind
speeds and larger air-sea temperature differences in the latter.

Fig. 10 shows the influence of short wave radiation Q (direct and
diffuse) on the cooling rate of the canvas bucket. For Q=100 Wm-2

the decrease in cooling rate compared to Q=O is nearly
independent of all other exposure variables. There is a larger
fractional decrease in cooling in the extratropics, but even
there the effect is only strong second order. Warming effects are
likely to be largest in the tropics and in mid-latitude summer
as Q would be largest then. So only rough estimates of Q are
needed in a correction procedure. If the bucket is shaded the
effects of diffuse radiation will be small.

Fig. 11 shows cooling curves for S=4m/s for the--large wooden
bucket for up to six minutes exposure time. The curves have a
different shape from those for the canvas bucket in Fig. 9. The
canvas bucket cooling rate tends to slowly decrease after the
insertion of the thermometer at 1.5 minutes exposure time,
whereas the wooden bucket rate slowly increases after this.
Insertion of the thermometer causes much of the increase in rate
in the third half minute. However after 6 minutes the total
cooling of the water in the wooden bucket is still only about 20-
25% of that of the canvas bucket for the same conditions.

8. On deck tests of the theory of the cooling of a canvas bucket

8.1 Procedure

The following tests were organised by Professor R Newell and
carried out by students of the USA Sea Education Association on
the deck of a ship in the tropical North Atlantic in February and
March 1991. An Ashford type (UK Met Office) canvas bucket was
filled with water and the temperature of the water, kept well
mixed, was moni tored for 10 minutes. The bucket was kept in shade
and the ambient temperature and humidity were measured using a
whirling psychrometer. The wind speed. past the bucket at bucket
level was measured with a hand anemometer. As a check, the sea
surface temperature was also measured using a plastic bucket and
the air temperature taken by the thermistor used to measure the
changing bucket temperature just before immersion. The thermistor
measurements did not always agree well with those from the
whirling psychrometer. For consistency, the whirling psychrometer
dry bulb values have been chosen as these were used to calculate
the vapour pressure (not surprisingly, the thermistor air
temperature values gave slightly less consistent resul ts compared
to the theory). Twenty four sets of measurements were analysed
(one set being rejected) that covered a range of cooling of the
bucket from zero to 1°C in ten minutes. In the model it was
assumed that F=l.

B.2 Results

Figs 12a-12c show three typical examples of modelled and observed
cooling curves covering the range of modelled cooling from slight
warming over 10 minutes to a cooling of about O.BoC. Fig. 12 is
typical of the other results: modelled and observed cooling rates
agree moderately well but very close correspondence only occurs
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in a minority of cases. This is not surprising given the
difficulty of making measurements of temperature and wind speed
exactly adjacent to the bucket; furthermore the observations of
ambient conditions are only single spot values, whereas more
frequent values may be desirable during the ten minutes exposure
period. Another source of uncertainty concerns the depth of water
in the bucket; this was not recorded but attempts were apparently
made to fill the bucket. Fig. 12 assumes an initial water depth
of 18cm, leaking at a rate of 0.5cm/min.

Over all 24 sets of measurements, the correlation between the
total observed and modelled temperature change after 10 minutes
was 0.67. The average observed change was -0. 46°C and the
averaged modelled change was -0.41°C, a mean difference of 0.05°C
or 11% of the mean observed temperature change. This difference
was not statistically significant according to a t test. Fig. 13
summarises the results. It is tentatively concluded that the
model gives about the correct form of cooling curve (Fig. 12) and
its overall estimates of cooling rate may be unbiased. Clearly
many more on deck data are needed to confirm this conclusion,
preferably including more frequent measurements of ambient
conditions while the bucket is exposed. As explained in section
3, the most likely error is a modest underestimate of cooling
rate if the ambient airflow is turbulent.

8.3 Summary of how bucket models are used to correct historic SST
data

As explained in FP(1990), the correction of SST data as made in
Bottomley et al. (1990) depends on the use of the average of
corrections derived from several bucket models in a special way
that takes advantage of a remarkable characteristic of historical
SST data. We observe that the annual cycle of sea surface
temperature away from the equator was considerably larger on
average prior to 1942 than afterwards with a sometimes remarkably
sudden decrease after 1941. The models are integrated until
corrections derived from the calculated cooling or heating in
each calendar month gives an annual cycle of SST in pre-1942 data
(away from the equator) closest in magnitude to that observed for
1951-80. Near the equator where annual cycles are too small to
use, the model is integrated for the same time as in
extratropical regions, This allows a global set of 5° calendar
monthly corrections to be calculated. Pre-1942 annual cycles in
uncorrected SST are largest compared to those for 1951-80 in the
North Atlantic and North Pacific between 30 and SooN; running the
canvas bucket models for a few simulated minutes gives
corrections which give the required reduction in the annual
cycle. The final set of corrections for each 5° box are averages
for each calendar month calculated from several models that use
buckets of different size exposed to fixed climatological
conditions of wind speed, humidity, temperature etc calculated
for 1951-80 over the box. Running the bucket models for too long
an exposure time results in an increase in the difference in the
size of the annual cycle between pre-1942 and 1951-80 data with
altered phase (see FP, 1990). Models run with different bucket
sizes and reasonatle :;hanges to assumed conditions on deck
invariably give similar but not identical sets of corrections.
The compensating factor is the length of time that the bucket
model needs to be integrated; this is least for small buckets
that cool the fastest. For canvas buckets, the range of times
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spans those recommended in historical instructions when allowance
is made for a bucket hauling phase.

Thus the bucket model correction technique gives results largely
independent of factors for which precise details are not known.
An exception concerns the sensitivity of the corrections to our
lack of knowledge of the mix of wooden and canvas buckets used
in the 19th century. This is discussed in FP: different
assumptions about the mix of canvas and wooden buckets are a part
of the cause of differences in calculated 19th century
corrections between FP and FWJS. Differences in the correction
procedures for the cooling of wooden buckets and differences in
the data are the other causes of different analysed temperature
levels.

9. Summary

This note contains the complete theory of the bucket models. The
limited tests of the canvas bucket -theory on board ship appear
to be validate the theory, though further results are needed. The
way the models are used to correct SST data is quite fully
described in FP(1990)i a similar technique used to correct more
recent analyses using the latest version of the theory described
here will be discussed fully in FP(1992). In FP(1990) the canvas
bucket model is similar in form to that used here. However the
wooden bucket model is different as discussed in section 6. The
biggest problem affecting corrections remains the uncertainty in
the changing fraction of wooden and uninsulated buckets used in
the nineteenth century.
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APPENDIX 1

CALCULATION OF THE HEAT TRANSFER COEFFICIENT FOR A FLAT CIRCULAR
BUCKET BASE

Heat transfer from the base is assumed to result from forced

,
I

Air Flow

-Figure Al.l Geometry of heat transfer
from a circular bucket base

From equation 3a in the main text, the local sensible heat
transfer coefficient at a point a distance x from the windward
edge of the base of the bucket is:

h = k Nux x x

Consider the line AB in Fig. Al.l. We need to.find the average
value of h between A and B. This average, hba is then the
weighted average of h for all lines parallel to AB. Let the
length of AB be L, the average value of h between A and B is:

(Al . 1)

An expression for hx was given at equation 6a. Expanding Re using
equation la:
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Zlh = o. 33k (_o ) 0.5 PrO.333
X XV

Assuming that k, Pr, and u are constant, with the values shown
in the canvas bucket section, we can rewrite the above as:

where

PrO.)))
p = O.33k ,,0.5

Substituting this expression for h into equation A1.1 and notingx
that L=Dsin9 we obtain:

u
F=2h =2P( ° )0.5 (A1.2)

x L Dsin6

Thus the mean heat transfer coefficient along AB is twice that
at the leeward end. It remains to find the areas associated with
all narrow filaments centred on lines like AB. Consider figure
A1.1. The length of line CD is D/2cos9 and of line CD' is
D/2(cos(9+d9». A little manipulation gives the filament width,
the difference of these two lengths, as D/2sin9d9. Now the length
L=Dsin9, giving a filament area of D2/2 sin29dS. Let this be dA
and the area of the base A. Then the mean heat transfer
coefficient for the base is given by the mean value of all
possible values of 2hL i.e.

i.e
'K

2"'li;. = 21. (5_)c.Sf ciA
.. ADD sino.sa

Substituting for the area of the circular base we get:

11 0.5 1r

2"£ = b = 4J!.(-O) !sin1.S6al3
L ban 11: D

()

Substi tuting sin1.59=1. 75, K=O. 025Wm-1 °C-1, Pr=O. 71 and
u=1.5x10-5m2s-1 gives f3=1.91 hbaseis:
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U 0.5

hba.re = 4 .3 { ~) (Al. 3)

APPENDIX 2

EQUIVALENCE OF THE BUCKET MODEL TO THAT OF THE THEORY OF THE
PSYCHROMETER

For simplicity let Q =0 (the usual situation with a wet bulb).
When the canvas buck~t temperature is in equilibrium, as with a
wet bulb, dQ/dT=O. We assume that pure water is being used. Then
the loss of heat due to evaporation equals the gain of heat due
to sensible and radiative heat transfer in equation 12 (short
wave radiation is assumed not to be incident). However first let
the factor 1.7 in equation 12 be replaced by a value, 1.72,
correct to three significant figures and also recalculated for
a pressure of 1000mb as normally used in calculations of the
psychrometer coefficient.

If we divide both sides by the factors multiplying eb-e the
resul ting factor multiplying t -tb is the psycliro~eter
coefficient appropriate to a pressure of 1000mb. Replace suffix
b by suffix w to represent a wet bulb. Then for a small narrow
bulb with Aba «A, we have:se cy

b
ev - e.. = O.58(1+r) «. - tv)

cyl
(A2.2)

First set h =0. We obtain, independently of all heat transfer
coefficients:

etl - ea = 0.58 (t. - t.,) (A2. 3)

The constant 0.58 is the theoretical value of the psychrometer
coefficient, when the influence of long wave radiation is not
taken into account, for a surface pressure of 1000mb given by
Wylie (1968). When we include h, the psychrometer coefficient
depends (fairly weakly) on wind speed and, if not very narrow,
on the thermometer diameter. So the psychrometer coefficient
depends weakly on the details of the cylindrical geometry
(equation A2.1). Setting h =5. 4Wm-2 °c-1, consider an incident mean
wind speed 5ms-1 and a typical thermometer diameter O.005m and
bulb length 0.03m. Then as Re>103 we use equation 5d to calculate
h,. For a surface pressure of 1000mb, we get the larger
p~ychrometer coefficient of 0.62 which is still slightly below
the observed value of 0.666 for the probable reasons discussed
by Wylie (1968). For a canvas bucket of diameter 16cm, typical
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water depth 15cm, air speed of 3ms-1 on deck blowing past the
bucket, F=0.25, and no incident short wave radiation, the
"psychrometer coefficient" is 0.76 using equation A2.1.
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